Acetyl-CoA:benzylalcohol acetyltransferase--an enzyme involved in floral scent production in Clarkia breweri.

نویسندگان

  • N Dudareva
  • J C D'Auria
  • K H Nam
  • R A Raguso
  • E Pichersky
چکیده

Volatile esters impart distinct characteristics to the floral scent of many plants, and are important in attracting insect pollinators. They are also important flavor compounds in fruits. The ester benzylacetate is a major constituent of the floral scent of Clarkia breweri, an annual plant native to California. The enzyme acetyl-CoA:benzylalcohol acetyltransferase (BEAT), which catalyzes the formation of benzylacetate, has been purified from C. breweri petals, and a cDNA encoding this enzyme has been isolated and characterized. The sequence of the 433-residue BEAT protein does not show high similarity to any previously characterized protein, but a 35-residue region from position 135-163 has significant similarity (42-56% identity) to several proteins known or suspected to use an acyl-CoA substrate. E. coli cells expressing C. breweri BEAT produced enzymatically active protein, and also synthesized benzylacetate and secreted it into the medium. Of the different parts of the C. breweri flower, petals contained the majority of BEAT transcripts, and no BEAT mRNA was detected in leaves. The levels of BEAT mRNA in the petals increased as the bud matured, and peaked at anthesis, paralleling changes in BEAT activity. However, three days after anthesis, mRNA levels began a steep decline, whereas BEAT activity remained high for the next two days, suggesting that the BEAT protein is relatively stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases.

S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase (SAMT) was partially purified from petals of the annual California plant Clarkia breweri. SAMT catalyzes the formation of methylsalicylate, an important floral scent compound in C. breweri, from salicylic acid and S-adenosyl-L-methionine (SAM). The native enzyme is a dimer with a subunit molecular weight of 40.3 kDa, and it has a...

متن کامل

Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower.

Flowers of Clarkia breweri, an annual plant from the coastal range of California, emit a strong sweet scent of which S-linalool, an acyclic monoterpene, is a major component. Chromosomal, chemical, and morphological data, and the species' geographic distribution, suggest that C. breweri evolved from an extant nonscented species, C. concinna. A cDNA of Lis, the gene encoding S-linalool synthase,...

متن کامل

Update on Biochemistry Biochemical and Molecular Genetic Aspects of Floral Scents

The chemical composition of floral scents has been extensively investigated for hundreds of years because of the commercial value of floral volatiles in perfumery. More recently, several ecological studies have examined the roles of floral scent in the biology of the plant. However, in contrast to the chemical emphasis of the perfumers and the organismal emphasis of the ecologists, until recent...

متن کامل

Biochemical and molecular genetic aspects of floral scents.

The chemical composition of floral scents has been extensively investigated for hundreds of years because of the commercial value of floral volatiles in perfumery. More recently, several ecological studies have examined the roles of floral scent in the biology of the plant. However, in contrast to the chemical emphasis of the perfumers and the organismal emphasis of the ecologists, until recent...

متن کامل

Evidence for positive selection on the floral scent gene isoeugenol-O-methyltransferase.

Isoeugenol-O-methyltransferase (IEMT) is an enzyme involved in the production of the floral volatile compounds methyl eugenol and methyl isoeugenol in Clarkia breweri (Onagraceae). IEMT likely evolved by gene duplication from caffeic acid-O-methyltransferase followed by amino acid divergence, leading to the acquisition of its novel function. To investigate the selective context under which IEMT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 1998